Machine Learning/LiftWing/ML-Sandbox/Configuration
Installation + Configuration script for ML-Sandbox.
Summary
This is a guide for installing the KServe stack locally using WMF tools and images. The install steps diverge from the official KServe quick_install script in order to run on WMF infrastructure. All upstream changes to YAML configs were first published in the KServe chart’s README for the deployment-charts repository. In deployment-charts/custom_deploy.d/istio/ml-serve there is the config.yaml that we apply in production.
Minikube
We are running a small cluster using Minikube, which can be installed with the following command:
curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64
sudo install minikube-linux-amd64 /usr/local/bin/minikube
To match production, we want to make sure we set our k8s version to v.1.16.15:
# if needed
minikube stop
minikube delete
# start minikube
minikube config set memory 24576
minikube config set cpus 4
minikube start --kubernetes-version=v1.16.15
If you see an issue related to something like HOST_LOCK_JUJU, you can do the following hack:
sudo chown root:root /tmp/juju-mk*
sudo sysctl fs.protected_regular=0
You will also need to install kubectl, or you can use the one provided by minikube with an alias:
alias kubectl="minikube kubectl --"
Helm
First, install helm3 (it is in the WMF APT repo https://wikitech.wikimedia.org/wiki/APT_repository, debian buster) See: https://apt-browser.toolforge.org/buster-wikimedia/main/:
sudo apt install helm
Also ensure that it is helm3:
helm version
version.BuildInfo{Version:"v3.7.1", GitCommit:"1d11fcb5d3f3bf00dbe6fe31b8412839a96b3dc4", GitTreeState:"clean", GoVersion:"go1.16.9"}
Now download the deployment-charts repo and use the templates to create “dev” charts:
#######################################
# Create dev charts via helm template #
#######################################
git clone "https://gerrit.wikimedia.org/r/operations/deployment-charts"
cd deployment-charts
helm template "charts/knative-serving" > dev-knative-serving.yaml
helm template "charts/kserve" > dev-kserve.yaml
There will a number of references to “RELEASENAME” in the new yaml files, so we will need to replace it with a name like “dev”:
# replace all references to "RELEASE_NAME" to "dev"
sed -i 's/RELEASE-NAME/dev/g' dev-knative-serving.yaml
sed -i 's/RELEASE-NAME/dev/g' dev-kserve.yaml
Istio
Istio is installed using the istioctl package, which has been added to the WMF APT repository, you can use it (https://wikitech.wikimedia.org/wiki/APT_repository, debian buster). See: https://apt-browser.toolforge.org/buster-wikimedia/main/ , we want to install Istio 1.9.5 (istioctl: 1.9.5-1)
For Wikimedia servers and Cloud VPS instances, the repositories are automatically configured via Puppet. You can install it as follows
sudo apt install istioctl -y
Now we need to create the istio-system namespace:
######################
# Istio Installation #
######################
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Namespace
metadata:
name: istio-system
labels:
istio-injection: disabled
EOF
Next you will need to create a file called istio-minimal-operator.yaml:
apiVersion: install.istio.io/v1beta1
kind: IstioOperator
spec:
values:
global:
proxy:
autoInject: disabled
useMCP: false
# The third-party-jwt is not enabled on all k8s.
# See: https://istio.io/docs/ops/best-practices/security/#configure-third-party-service-account-tokens
jwtPolicy: first-party-jwt
meshConfig:
accessLogFile: /dev/stdout
addonComponents:
pilot:
enabled: true
components:
ingressGateways:
- name: istio-ingressgateway
enabled: true
- name: cluster-local-gateway
enabled: true
label:
istio: cluster-local-gateway
app: cluster-local-gateway
k8s:
service:
type: ClusterIP
ports:
- port: 15020
targetPort: 15021
name: status-port
- port: 80
name: http2
targetPort: 8080
- port: 443
name: https
targetPort: 8443
Next you can apply the manifest using istioctl:
/usr/bin/istioctl-1.9.5 manifest apply -f ../istio-minimal-operator.yaml -y
Knative
We are currently running Knative Serving v0.18.1.
First, let’s create a namespace for knative-serving:
########################
# Knative Installation #
########################
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Namespace
metadata:
name: knative-serving
labels:
serving.knative.dev/release: "v0.18.1"
EOF
Now let’s install the Knative serving-crds.yaml. The CRDs are copied from upstream: https://github.com/knative/serving/releases/download/v0.18.1/serving-crds.yaml
We have them included in our deployment-charts repo: https://gerrit.wikimedia.org/r/plugins/gitiles/operations/deployment-charts/+/refs/heads/master/charts/knative-serving-crds/templates/crds.yaml
You can install using the following command (in the deployment-charts repo):
kubectl apply -f charts/knative-serving-crds/templates/crds.yaml
We can now apply the Knative “dev” chart that we generated using helm:
kubectl apply -f dev-knative-serving.yaml
Next we need to add registries skipping tag resolving etc.:
# update config-deployment to skip tag resolving
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: ConfigMap
metadata:
name: config-deployment
namespace: knative-serving
data:
queueSidecarImage: docker-registry.wikimedia.org/knative-serving-queue:0.18.1-4
registriesSkippingTagResolving: "kind.local,ko.local,dev.local,docker-registry.wikimedia.org,index.docker.io"
EOF
Images
- Webhook: https://docker-registry.wikimedia.org/knative-serving-webhook/tags/
- Queue: https://docker-registry.wikimedia.org/knative-serving-queue/tags/
- Controller: https://docker-registry.wikimedia.org/knative-serving-controller/tags/
- Autoscaler: https://docker-registry.wikimedia.org/knative-serving-autoscaler/tags/
- Activator: https://docker-registry.wikimedia.org/knative-serving-activator/tags/
- Net-istio webhook: https://docker-registry.wikimedia.org/knative-net-istio-webhook/tags/
- Net-istio controller: https://docker-registry.wikimedia.org/knative-net-istio-controller/tags/
KServe
Let’s create the namespace kserve:
#######################
# KServe Installation #
#######################
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Namespace
metadata:
labels:
control-plane: kserve-controller-manager
controller-tools.k8s.io: "1.0"
istio-injection: disabled
name: kserve
EOF
Now we can install the “dev” chart we created with helm template:
kubectl apply -f dev-kserve.yaml
This should install everything we need to run kserve, however, we still need to deal with tls certificate. We will use the self-signed-ca hack outlined in the kserve repo: https://github.com/kserve/kserve/blob/master/hack/self-signed-ca.sh
First, delete the existing secrets:
# delete existing certs
kubectl delete secret kserve-webhook-server-cert -n kserve
kubectl delete secret kserve-webhook-server-secret -n kserve
Now copy that script and execute it:
curl -LJ0 https://raw.githubusercontent.com/kserve/kserve/master/hack/self-signed-ca.sh > self-signed-ca.sh
chmod +x self-signed-ca.sh
./self-signed-ca.sh
Verify that you now have a new webhook-server-cert:
kubectl get secrets -n kserve
NAME TYPE DATA AGE
default-token-ccsk4 kubernetes.io/service-account-token 3 5d1h
kserve-webhook-server-cert Opaque 2 30s
Lastly, let’s setup a namespace to deploy our inference services to:
kubectl create namespace kserve-test
Images
- KServe agent: https://docker-registry.wikimedia.org/kserve-agent/tags/
- Kserve controller: https://docker-registry.wikimedia.org/kserve-controller/tags/
- KServe storage-initializer: https://docker-registry.wikimedia.org/kserve-storage-initializer/tags/
Minio
This is an optional step for using minio for model storage in your development cluster. In Production, we us Thanos Swift to store our model binaries, however, we can use something more adhoc for local dev.
This will mostly follow the document here: https://github.com/kserve/website/blob/main/docs/modelserving/kafka/kafka.md
First we create a file called minio.yaml, with the following contents:
---
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: minio
name: minio
namespace: kserve-test
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
app: minio
strategy:
type: Recreate
template:
metadata:
labels:
app: minio
spec:
containers:
- args:
- server
- /data
env:
- name: MINIO_ACCESS_KEY
value: minio
- name: MINIO_SECRET_KEY
value: minio123
image: minio/minio:RELEASE.2020-10-18T21-54-12Z
imagePullPolicy: IfNotPresent
name: minio
ports:
- containerPort: 9000
protocol: TCP
---
apiVersion: v1
kind: Service
metadata:
labels:
app: minio
name: minio-service
spec:
ports:
- port: 9000
protocol: TCP
targetPort: 9000
selector:
app: minio
type: ClusterIP
Next, you can install the minio test instance to your cluster:
kubectl apply -f minio.yaml -n kserve-test
Now we need to install the Minio client (mc):
curl -LJ0 https://dl.min.io/client/mc/release/linux-amd64/mc > mc
chmod +x mc
./mc --help
Now we need to port-forward our minio test app in a different terminal window
# Run port forwarding command in a different terminal
kubectl port-forward $(kubectl get pod -n kserve-test --selector="app=minio" --output jsonpath='{.items[0].metadata.name}') 9000:9000 -n kserve-test
Now lets add our test instance and create a bucket for model storage
./mc config host add myminio http://127.0.0.1:9000 minio minio123
./mc mb myminio/wmf-ml-models
Now we need to create an s3 secret for minio and attach it to a service account.
apiVersion: v1
kind: Secret
metadata:
name: storage-secret
annotations:
serving.kserve.io/s3-endpoint: minio-service.kserve-test:9000 # replace with your s3 endpoint
serving.kserve.io/s3-usehttps: "0" # by default 1, for testing with minio you need to set to 0
serving.kserve.io/s3-verifyssl: "0"
serving.kserve.io/s3-region: us-east-1
type: Opaque
stringData:
AWS_ACCESS_KEY_ID: minio
AWS_SECRET_ACCESS_KEY: minio123
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: sa
secrets:
- name: storage-secret
---
and we can apply it as follows:
kubectl apply -f s3-secret.yaml -n kserve-test
You should be able to upload a model binary file as follows:
./mc cp model.bin myminio/wmf-ml-models/
You can use the modelupload.sh script to handle model uploads to minio. First you need to create a s3cmd config file called ~/.s3cfg:
# Setup endpoint
host_base = 127.0.0.1:9000
host_bucket = 127.0.01:9000
bucket_location = us-east-1
use_https = False
# Setup access keys
access_key = minio
secret_key = minio123
# Enable S3 v4 signature APIs
signature_v2 = False
Now you can download the modelupload script and use in on the ml-sandbox:
curl -LJ0 https://gitlab.wikimedia.org/accraze/ml-utils/-/raw/main/model_upload.sh > model_upload.sh
chmod +x model_upload.sh
./model_upload.sh model.bin articlequality enwiki wmf-ml-models ~/.s3cfg
Finally, when you create an Inference service, you can point it at the new minio bucket (s3://wmf-ml-models), just make sure to add the serviceAccountName “sa” to the container that has a storage uri.
Example Inference Service spec:
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: enwiki-goodfaith
annotations:
sidecar.istio.io/inject: "false"
spec:
predictor:
serviceAccountName: sa
containers:
- name: kfserving-container
image: docker-registry.wikimedia.org/wikimedia/machinelearning-liftwing-inference-services-editquality:2021-07-28-204847-production
env:
# TODO: https://phabricator.wikimedia.org/T284091
- name: STORAGE_URI
value: "s3://wmf-ml-models/"
- name: INFERENCE_NAME
value: "enwiki-goodfaith"
Notes
Delete cluster
Sometimes you might need to destroy the cluster and rebuild. Here is a helpful command:
minikube delete --purge --all
minikube start --kubernetes-version=v1.16.15 --cpus 4 --memory 8192 --driver=docker --force